lunes, 6 de julio de 2009

Roscas

Definiciones de la Terminología

Ref: La información siguiente está basada en documentos generados por la
Escuela de Ingeniería de la Universidad Católica de Chile

http://www2.ing.puc.cl/~icm2312/apuntes/uniones/roscas.html
http://www2.ing.puc.cl/~icm2312/apuntes/uniones/rosca1.html
http://www2.ing.puc.cl/~icm2312/apuntes/uniones/rosca2.html
http://www2.ing.puc.cl/~icm2312/apuntes/uniones/union1.html






Normas y Estándares
Organismos de Normalización
En la tabla que se presenta a continuación, se indican los organismos de normalización de varias naciones.

PAIS ABREVIATURA DE LA NORMA ORGANISMO NORMALIZADOR
Internacional ISO Organización Internacional de Normalización.
España UNE Instituto de Racionalización y Normalización.
Alemania DIN Comité de Normas Alemán.
Rusia GOST Organismo Nacional de Normalización Soviético.
Francia NF Asociación Francesa de Normas.
Inglaterra BSI Instituto de normalización Ingles.
Italia UNI Ente Nacional Italiano de Unificación.
América USASI Instituto de Normalización para los Estados de América.


Tipos de Roscas:
Existen varios tipos de rosca, como por ejemplo:
roscas métricas (M),
rosca unificada fina (UNF),
rosca unificada normal (corriente) (UNC),
rosca Witworth de paso fino (BSF),
rosca Witworth de paso normal (BSW o W), entre otras.

Las diferencias se basan en la forma de los filetes que los hacen más apropiados para una u otra tarea, las roscas indicadas son las más utilizadas en elementos de unión.
En la figura siguiente se aprecian varias formas de roscas, los filetes triangulares son utilizados en pernos y tuercas, los filetes redondos son utilizados en uniones rápidas de tuberías, finalmente las roscas rectangulares en general se utilizan para ejercer fuerza en prensas.



DESIGNACIÓN DE LAS ROSCAS

La designación de las roscas se hace por medio de su letra representativa e indicando la dimensión del diámetro exterior y el paso. Este último se indica directamente en milímetros para la rosca métrica, mientras que en la rosca unificada y Witworth se indica a través de la cantidad de hilos existentes dentro de una pulgada.
Por ejemplo, la rosca M 3,5 x 0,6 indica una rosca métrica normal de 3,5 mm de diámetro exterior con un paso de 0,6 mm. La rosca W 3/4 ’’- 10 equivale a una rosca Witworth normal de 3/4 pulg de diámetro exterior y 10 hilos por pulgada.
La tabla siguiente entrega información para reconocer el tipo de rosca a través de su letra característica, se listan la mayoría de las roscas utilizadas en ingeniería mecánica.
Símbolos de roscado más comunes Denominación usual Otras
American Petroleum Institute API
British Association BA
International Standards Organisation ISO
Rosca para bicicletas C
Rosca Edison E
Rosca de filetes redondos Rd
Rosca de filetes trapesoidales Tr
Rosca para tubos blindados PG Pr
Rosca Whitworth de paso normal BSW W
Rosca Whitworth de paso fino BSF
Rosca Whitworth cilíndrica para tubos BSPT KR
Rosca Whitworth BSP R
Rosca Métrica paso normal M SI
Rosca Métrica paso fino M SIF
Rosca Americana Unificada p. normal UNC NC, USS
Rosca Americana Unificada p. fino UNF NF, SAE
Rosca Americana Unificada p.exrafino UNEF NEF
Rosca Americana Cilíndrica para tubos NPS
Rosca Americana Cónica para tubos NPT ASTP
Rosca Americana paso especial UNS NS
Rosca Americana Cilíndrica "dryseal" para tubos NPSF
Rosca Americana Cónica "dryseal" para tubos NPTF
Es posible crear una rosca con dimensiones no estándares, pero siempre es recomendable usar roscas normalizadas para adquirirlas en ferreterías y facilitar la ubicación de los repuestos. La fabricación y el mecanizado de piezas especiales aumenta el costo de cualquier diseño, por lo tanto se recomienda el uso de las piezas que están en plaza.
Se han destacado solamente las roscas métricas, unificadas y withworth por ser las más utilizadas, pero existen muchas roscas importantes para usos especiales. Le entregan a continuación las tablas detalladas de estas tres familias de roscas para las series fina y basta.
METRICA PASO FINO
Medida Nominal
Dext x paso
M 2.5 x 0.35
M 3 x 0.35
M 3.5 x 0.35
M 4 x 0.5
M 5 x 0.5
M 6 x 0.75
M 7 x 0.75
M 8 x 0.75
M 8 x 1
M 9 x 0.75
M 9 x 1
M 10 x 0.75
M 10 x 1
M 10 x 1.25
M 11 x -
M 11 x 0.75
M 12 x 1
M 12 x 1
M 12 x 1.25
M 13 x 1.5
M 14 x 1
M 14 x 1
M 14 x 1.25
M 15 x 1
M 15 x 1.5
M 16 x 1
M 16 x 1.5
M 17 x 1.5
M 17 x 1
M 18 x 1.5
M 18 x 1
M 20 x 1.5
M 20 x 1
M 22 x 1.5
M 22 x 1
M 24 x 1.5
M 24 x 1
M 24 x 1.5
M 25 x 1
M 25 x 1.5
METRICA PASO FINO
Medida Nominal
Dext x paso
M 25 x 1.5
M 25 x 2
M 26 x 1.5
M 27 x 1
M 27 x 1.5
M 27 x 2
M 28 x 1
M 28 x 1.5
M 28 x 2
M 30 x 1
M 30 x 1.5
M 30 x 2
M 32 x 1.5
M 32 x 2
M 33 x 1.5
M 33 x 2
M 34 x 1.5
M 35 x 1.5
M 35 x 2
M 36 x 2
M 36 x 3
M 38 x 1.5
M 38 x 2
M 39 x 1.5
M 39 x 2
M 39 x 3
M 40 x 1.5
M 40 x 2
M 40 x 3
M 42 x 2
M 42 x 3
M 45 x 1.5
M 45 x 2
M 45 x 3
M 48 x 2
M 48 x 3
M 50 x 2
M 50 x 3
M 52 x 2
M 52 x 3
METRICA PASO NORMAL
Medida Nominal
Dext x paso
M 1.6 x 0.35
M 1.7 x 0.35
M 2 x 0.4
M 2.2 x 0.45
M 2.3 x 0.4
M 2.5 x 0.45
M 2.6 x 0.45
M 3 x 0.5
M 3 x 0.6
M 3.5 x 0.6
M 4 x 0.7
M 4 x 0.75
M 4.5 x 0.75
M 5 x 0.75
M 5 x 0.8
M 5 x 0.9
M 5 x 1
M 5.5 x 0.9
M 6 x 1
M 7 x 1
M 8 x 1.25
M 9 x 1.25
M 10 x 1.5
M 11 x 1.5
M 12 x 1.75
M 14 x 2
M 16 x 2
M 18 x 2.5
M 20 x 2.5
M 22 x 2.5
M 24 x 3
M 27 x 3
M 30 x 3.5
M 33 x 3.5
M 36 x 4
M 39 x 4
M 42 x 4.5
M 45 x 4.5
M 48 x 5
M 52 x 5

UNIFICADA PASO NORMAL
Medida Nominal
- Nº H/''
4 (.112") - 40 UNC
5 (.125") - 40 UNC
6 (.138") - 32 UNC
8 (.164") - 32 UNC
10 (.190") - 24 UNC
12 (.216") - 24 UNC
1/4" - 20 UNC
5/16" - 18 UNC
3/8" - 16 UNC
7/16" - 14 UNC
1/2" - 13 UNC
9/16" - 12 UNC
5/8" - 11 UNC
3/4" - 10 UNC
7/8" - 9 UNC
1" - 8 UNC
1"1/8" - 7 UNC
1"1/4" - 7 UNC
1"3/8" - 6 UNC
1"1/2" - 6 UNC
1"3/4" - 5 UNC
2" - 4 1/2 UNC
2" - 4 1/2 UNC
2"1/2" - 4 UNC
2"3/4 - 4 UNC
3" - 4 UNC
UNIFICADA PASO FINO
Medida Nominal
Dext - Nº H/''
Nº 0 (.060'') - 80 UNC
Nº 1 (.073") - 72 UNC
Nº 2 (.086") - 64 UNC
Nº 3 (.099") - 56 UNC
Nº 4 (.112") - 48 UNC
Nº 5 (.125") - 44 UNC
Nº 6 (.138") - 40 UNC
Nº 8 (.164") - 36 UNC
Nº 10 (.190") - 32 UNC
Nº 12 (.216") - 28 UNC
1/4'' - 28 UNC
5/16'' - 24 UNC
3/8'' - 24 UNC
7/16'' - 20 UNC
1/2'' - 20 UNC
9/16'' - 18 UNC
5/8'' - 18 UNC
3/4'' - 16 UNC
7/8'' - 14 UNC
1'' - 12 UNC
1''1/8'' - 12 UNC
1''1/4'' 4 12 UNC
1''3/4'' 4 12 UNC
1''1/12'' - 12 UNC

WHITWORTH PASO NORMAL
Medida Nominal
Dext - Nº H/''
W 1/16 '' - 60
W 3/32'' - 48
W 1/8'' - 40
W 5/32'' - 32
W 3/16'' - 24
W 7/32'' - 24
W 1/4'' - 20
W 5/16'' - 18
W 3/8'' - 16
W 7/16'' - 14
W 1/2'' - 12
W 9/16'' - 12
W 5/8'' - 11
W 3/4'' - 10
W 7/8'' - 9
W 1'' - 8
W 1''1/8'' - 7
W 1''1/4'' - 7
W 1''3/8'' - 6
W 1''1/2'' - 6
W 1''5/8'' - 5
W 1''3/4'0' 5
W 1''7/8'' 4
W 2'' - 4
W 2''1/4'' - 4
W 2''1/2'' - 4
W 2''3/4'' - 3
W 3'' - 3
WHITWORTH PASO FINO
Medida Nominal
Dext - Nº H/''
BFS 3/16'' - 32
BFS 7/32'' - 28
BFS 1/4'' - 26
BFS 9/32'' - 26
BFS 5/16'' - 22
BFS 3/8'' - 20
BFS 7/16'' - 18
BFS 1/2'' - 16
BFS 9/16'' - 16
BFS 5/8'' - 14
BFS 11/16'' - 14
BFS 3/4'' - 12
BFS 13/16'' - 12
BFS 7/8'' - 11
BFS 1'' - 10
BFS 1''1/8'' - 9
BFS 1''1/4'' - 9
BFS 1''3/8'' - 8
BFS 1''1/2'' - 8
BFS 1''5/8'' - 8
BFS 1''3/4'' - 7
BFS 2'' 7
BFS 2''1/4'' 6
BFS 2''1/2'' - 6
BFS 2''3/4'' - 6
BFS 3'' - 5


Con respecto al sentido de giro, en la designación se indica "izq" si es una rosca de sentido izquierdo, no se indica nada si es de sentido derecho. De forma similar, si tiene más de una entrada se indica "2 ent" o "3 ent". Si no se indica nada al respecto, se subentiende que se trata de una rosca de una entrada y de sentido de avance derecho.
En roscas de fabricación norteamericana, se agregan más símbolos para informar el grado de ajuste y tratamientos especiales

RESISTENCIA DE PERNOS

Las normas de prueba de pernos indican cargarlo contra su propio hilo, sin utilizar una probeta representativa. Esto genera un valor llamado carga de prueba, la cual puede utilizarse para diseñar en reemplazo de la resistencia a la fluencia. Se adjuntan las marcas con que se indica el grado de resistencia de los pernos, para las normas SAE, ASTM y Métrica. Se adjunta también la tabla de marcas de los productos American Screw.

Marcado de pernos de acero grado SAE
Número de grado SAE Rango del diámetro [inch] Carga de prueba [kpsi] Esfuerzo de ruptura [kpsi] Material Marcado de la cabeza
1 2 ¼ - 1½ ¼ - ¾ 7/8 - 1½ 55 33 74 60 Acero de bajo carbono ó
acero al carbono

5 ¼ - 1 11/8 - 1½ 85 74 120 105 Acero al carbono, Templado y Revenido

5.2 ¼ - 1 85 120 Acero de bajo carbono
martensítico, Templado y Revenido

7 ¼ - 1½ 105 133 Acero al carbono aleado, Templado y Revenido

8 ¼ - 1½ 120 150 Acero al carbono aleado, Templado y Revenido

8.2 ¼ - 1 120 150 Acero de bajo carbono martensítico, Templado y Revenido


Marcas para pernos de acero grado ASTM
Designación ASTM Rango del diámetro [inch] Carga de prueba [kpsi] Esfuerzo de ruptura [kpsi] Material Marcado de la cabeza
A307 ¼ a 4 Acero de bajo carbono

A325 tipo 1 ½ a 1 11/8 a 1½ 85 74 120 105 Acero al carbono, Templado y Revenido

A325 tipo 2 ½ a 1 11/8 a 1½ 85 74 120 105 Acero de bajo carbono martensítico, Templado y Revenido

A325 tipo 3 ½ a 1 11/8 a 1½ 85 74 120 105 Acero recubierto, Templado y Revenido

A354 grado BC Acero aleado, Templado y Revenido

A354 grado BD ¼ a 4 120 150 Acero aleado, Templado y Revenido

A449 ¼ a 1 11/8 a 1½ 1¾ a 3 85 74 55 120 105 90 Acero al carbono, Templado y Revenido

A490 tipo 1 ½ a 1½ 120 150 Acero aleado, Templado y Revenido

A490 tipo 3 Acero recubierto, Templado y Revenido


Propiedades mecánicas de elementos roscados de clase métrica
Clase Rango del diámetro Carga de prueba [MPa] Esfuerzo de ruptura [MPa] Material Marcado de la cabeza
4.6 M5 - M36 225 400 Acero de bajo carbono ó
acero al carbono

4.8 M1.6 - M16 310 420 Acero de bajo carbono ó
acero al carbono

5.8 M5 - M24 380 520 Acero de bajo carbono ó
acero al carbono

8.8 M16 - M36 600 830 Acero al carbono, Templado y Revenido

9.8 M1.6 - M16 650 900 Acero al carbono, Templado y Revenido

10.9 M5 - M36 830 1040 Acero de bajo carbono
martensítico, Templado y
Revenido

12.9 M1.6 - M36 970 1220 Acero aleado, Templado y Revenido


MARCAS DE GRADOS DE RESISTENCIA PERNOS DE ACERO
MARCA A.S. GRADO RESISTENCIA ESPECIFICACIÓN ALGUNOS USOS RECOMENDADOS Resistencia a la tracción mínima [Kg/mm2] Límite de fluencia mínima [Kg/mm2] DUREZA
SAE grado ISO clase ASTM

3,6 Para requerimientos menores de resistencia, metalmecánica, motores eléctricos, línea blanca. electrónica, usos generales. 34 20 53 - 70 Rb

J429 grado 1 ¼ " a 1 ½ " 4,6 A307 grado A y B Para requerimientos de resistencia media, construcción de máquinas livianas, automotriz (piezas no afectas a fuertes tensiones), máquinas agrícolas, estructuras livianas. 42 23 70 - 95 Rb

8,8 A449 Para requerimientos de alta resistencia a la tracción, ruedas de vehículos, partes de motores de tracción, cajas de cambio, máquinas herramientas, matrices 80 64 22 - 32 Rc
TIPO 1 A325 Para requerimientos de alta resistencia a la tracción y otros, especialmente para juntas estructurales exigidas mecánicamente. Debe trabajar con TU y golilla de la misma calidad Hasta 1 f 85 de 1 1/8 a 1 ½ f 74 Hasta 1 f 65 de 1 1/8 a 1 ½ f 57 Hasta 1 f 23 - 35 Rc de 1 1/8 a 1 ½ f 19 - 31 Rc

A490 Para requerimientos de alta resistencia a la tracción y alta temperatura. Debe trabajar con TU y golilla de la misma calidad 105 81 32 - 38 Rc
GRADO 8 8 10,9 Para requerimientos de alta resistencia a la tracción, flexión, cizalle, etc.
Culata de motores, paquete de resortes, pernos para ruedas vehículos pesados, bielas, etc. 105 88 31 - 38 Rc
Fuente: Catálogo de productos American Screw

Foto de tratamientos térmicos

Foto de tratamientos térmicos

CONTENIDOS

1 Propiedades mecánicas
1.1
Mejora de las propiedades a través del tratamiento térmico
1.2 Propiedades mecánicas del acero

2 Tratamientos térmicos del cero

3 Tratamientos termoquímicos del acero

4
Ejemplos de tratamientos
4.1
Endurecimiento del acero
4.2 Temple y revenido: Bonificado
4.3
Recocido
4.3.1
Recocido de Regeneración
4.3.2
Recocido de Globulización
4.3.3 Recocido de Subcrítico
4.4 Cementado
4.5 Carburización por empaquetado
4.6 Carburización en baño líquido
4.7 Carburización con gas
4.8 Carburado, cianurado y nitrurado




1) Propiedades mecánicas


Las características mecánicas de un material dependen tanto de su composición química como de la estructura cristalina que tenga. Los tratamientos térmicos modifican esa estructura cristalina sin alterar la composición química, dando a los materiales unas características mecánicas concretas, mediante un proceso de calentamientos y enfriamientos sucesivos hasta conseguir la estructura cristalina deseada.

Entre estas características están:

  • Resistencia al desgaste: Es la resistencia que ofrece un material a dejarse erosionar cuando está en contacto de fricción con otro material.
  • Tenacidad: Es la capacidad que tiene un material de absorber energía sin producir fisuras (resistencia al impacto).
  • Maquinabilidad: Es la facilidad que posee un material de permitir el proceso de mecanizado por arranque de viruta.
  • Dureza: Es la resistencia que ofrece un acero para dejarse penetrar. Se mide en unidades BRINELL (HB) o unidades ROCKWEL C (HRC), mediante el test del mismo nombre.

1.1 Mejora de las propiedades a través del tratamiento térmico

Las propiedades mecánicas de las aleaciones de un mismo metal, y en particular de los aceros, reside en la composición química de la aleación que los forma y el tipo de tratamiento térmico a los que se les somete. Los tratamientos térmicos modifican la estructura cristalina que forman los aceros sin variar la composición química de los mismos.

Esta propiedad de tener diferentes estructuras de grano con la misma composición química se llama polimorfismo y es la que justifica los tratamientos térmicos. Técnicamente el poliformismo es la capacidad de algunos materiales de presentar distintas estructuras cristalinas, con una única composición química, el diamante y el grafito son polimorfismos del carbono. La α-ferrita, la austenita y la δ-ferrita son polimorfismos del hierro. Esta propiedad en un elemento químico puro se denomina alotropía.

1.2 Propiedades mecánicas del acero

El acero es una aleación de hierro y carbono que contiene otros elementos de aleación, los cuales le confieren propiedades mecánicas especificas para su utilización en la industria metalmecánica.

Los otros principales elementos de composición son el cromo, tungsteno, manganeso, níquel, vanadio, cobalto, molibdeno, cobre, azufre y fósforo. A estos elementos químicos que forman del acero se les llama componentes, y a las distintas estructuras cristalinas o combinación de ellas constituyentes.

Los elementos constituyentes, según su porcentaje, ofrecen características especificas para determinadas aplicaciones, como herramientas, cuchillas, soportes, etcétera. La diferencia entre los diversos aceros, tal como se ha dicho depende tanto de la composición química de la aleación de los mismos, como del tipo de tratamiento térmico a los que se les somete.

2. Tratamientos térmicos del acero

El tratamiento térmico en el material es uno de los pasos fundamentales para que pueda alcanzar las propiedades mecánicas para las cuales está creado. Este tipo de procesos consisten en el calentamiento y enfriamiento de un metal en su estado sólido para cambiar sus propiedades físicas. Con el tratamiento térmico adecuado se pueden reducir los esfuerzos internos, el tamaño del grano, incrementar la tenacidad o producir una superficie dura con un interior dúctil. La clave de los tratamientos térmicos consiste en las reacciones que se producen en el material, tanto en los aceros como en las aleaciones no férreas, y ocurren durante el proceso de calentamiento y enfriamiento de las piezas, con unas pautas o tiempos establecido.

Para conocer a que temperatura debe elevarse el metal para que se reciba un tratamiento térmico es recomendable contar con los diagramas de cambio de fases como el de hierro–hierro–carbono. En este tipo de diagramas se especifican las temperaturas en las que suceden los cambios de fase (cambios de estructura cristalina), dependiendo de los materiales diluidos.

Los tratamientos térmicos han adquirido gran importancia en la industria en general, ya que con las constantes innovaciones se van requiriendo metales con mayores resistencias tanto al desgaste como a la tensión. Los principales tratamientos térmicos son:

  • Temple: Su finalidad es aumentar la dureza y la resistencia del acero. Para ello, se calienta el acero a una temperatura ligeramente más elevada que la crítica superior Ac (entre 900-950ºC) y se enfría luego más o menos rápidamente (según características de la pieza) en un medio como agua, aceite, etcétera.
  • Revenido: Sólo se aplica a aceros previamente templados, para disminuir ligeramente los efectos del temple, conservando parte de la dureza y aumentar la tenacidad. El revenido consigue disminuir la dureza y resistencia de los aceros templados, se eliminan las tensiones creadas en el temple y se mejora la tenacidad, dejando al acero con la dureza o resistencia deseada. Se distingue básicamente del temple en cuanto a temperatura máxima y velocidad de enfriamiento.
  • Recocido: Consiste básicamente en un calentamiento hasta temperatura de austenitización (800-925ºC) seguido de un enfriamiento lento. Con este tratamiento se logra aumentar la elasticidad, mientras que disminuye la dureza. También facilita el mecanizado de las piezas al homogeneizar la estructura, afinar el grano y ablandar el material, eliminando la acritud que produce el trabajo en frío y las tensiones internas.
  • Normalizado: Tiene por objeto dejar un material en estado normal, es decir, ausencia de tensiones internas y con una distribución uniforme del carbono. Se suele emplear como tratamiento previo al temple y al revenido.

3. Tratamientos termoquímicos del acero

Los tratamientos termoquímicos son tratamientos térmicos en los que, además de los cambios en la estructura del acero, también se producen cambios en la composición química de la capa superficial, añadiendo diferentes productos químicos hasta una profundidad determinada. Estos tratamientos requieren el uso de calentamiento y enfriamiento controlados en atmósferas especiales.

Entre los objetivos más comunes de estos tratamientos están aumentar la dureza superficial de las piezas dejando el núcleo más blando y tenaz, disminuir el rozamiento aumentando el poder lubrificante, aumentar la resistencia al desgaste, aumentar la resistencia a fatiga o aumentar la resistencia a la corrosión.

  • Cementación (C): aumenta la dureza superficial de una pieza de acero dulce, aumentando la concentración de carbono en la superficie. Se consigue teniendo en cuenta el medio o atmósfera que envuelve el metal durante el calentamiento y enfriamiento. El tratamiento logra aumentar el contenido de carbono de la zona periférica, obteniéndose después, por medio de temples y revenidos, una gran dureza superficial, resistencia al desgaste y buena tenacidad en el núcleo.
  • Nitruración (N): al igual que la cementación, aumenta la dureza superficial, aunque lo hace en mayor medida, incorporando nitrógeno en la composición de la superficie de la pieza. Se logra calentando el acero a temperaturas comprendidas entre 400 y 525 ºC, dentro de una corriente de gas amoniaco, más nitrógeno.
  • Cianuración (C+N): endurecimiento superficial de pequeñas piezas de acero. Se utilizan baños con cianuro, carbonato y cianato sódico. Se aplican temperaturas entre 760 y 950 ºC.
  • Carbonitruración (C+N): al igual que la cianuración, introduce carbono y nitrógeno en una capa superficial, pero con hidrocarburos como metano, etano o propano; amoniaco (NH3) y monóxido de carbono (CO). En el proceso se requieren temperaturas de 650 a 850 ºC y es necesario realizar un temple y un revenido posterior.
  • Sulfinización (S+N+C): aumenta la resistencia al desgaste por acción del azufre. El azufre se incorporó al metal por calentamiento a baja temperatura (565 ºC) en un baño de sales.

4.Ejemplos de tratamientos

4.1 Endurecimiento del acero

El proceso de endurecimiento del acero consiste en el calentamiento del metal de manera uniforme a la temperatura correcta (ver figura de temperaturas para endurecido de metales) y luego enfriarlo con agua, aceite, aire o en una cámara refrigerada. El endurecimiento produce una estructura granular fina que aumenta la resistencia a la tracción (tensión) y disminuye la ductilidad. El acero al carbono para herramientas se puede endurecer al calentarse hasta su temperatura crítica, la cual se adquiere aproximadamente entre los 790 y 830 °C, lo cual se identifica cuando el metal adquiere el color rojo cereza brillante. Cuando se calienta el acero la perlita se combina con la ferrita, lo que produce una estructura de grano fino llamada austenita. Cuando se enfría la austenita de manera brusca con agua, aceite o aire, se transforma en martensita, material que es muy duro y frágil.

4.2 Temple y revenido: Bonificado

Después que se ha endurecido el acero es muy quebradizo o frágil lo que impide su manejo pues se rompe con el mínimo golpe debido a la tensión interior generada por el proceso de endurecimiento. Para contrarrestar la fragilidad se recomienda el temple del acero (en algunos textos a este proceso se le llama revenido y al endurecido temple). Este proceso hace más tenaz y menos quebradizo el acero aunque pierde algo de dureza. El proceso consiste en limpiar la pieza con un abrasivo para luego calentarla hasta la temperatura adecuada (ver tabla), para después enfriarla con rapidez en el mismo medio que se utilizó para endurecerla.

Tabla de temperaturas para revenido de acero endurecido
Color Grados C Tipos de aceros
Paja claro 220 Herramientas como brocas, machuelos
Paja mediano 240 Punzones dados y fresas
Paja obscuro 255 Cizallas y martillos
Morado 270 Árboles y cinceles para madera
Azul obscuro 300 Cuchillos y cinceles para acero
Azul claro 320 Destornilladores y resortes

4.3 Recocido

El recocido es el tratamiento térmico que, en general, tiene como finalidad principal el ablandar el acero, regenerar la estructura de aceros sobrecalentados o simplemente eliminar las tensiones internas que siguen a un trabajo en frío. (Enfriamiento en el horno).

4.3.1 Recocido de Regeneración

También llamado normalizado, tiene como función regenerar la estructura del material producido por temple o forja. Se aplica generalmente a los aceros con más del 0.6% de C, mientras que a los aceros con menor porcentaje de C sólo se les aplica para finar y ordenar su estructura

Ejemplo:

Después de un laminado en frío, donde el grano queda alargado y sometido a tensiones, dicho tratamiento devuelve la microestructura a su estado inicial.

4.3.2 Recocido de Globulización

Usado en aceros hipoeutectoides para ablandarlos después de un anterior trabajo en frío. Por lo general se desea obtener globulización en piezas como placas delgadas que deben tener alta embutición y baja dureza. Los valores más altos de embutición por lo general están asociados con la microestructura globulizada que solo se obtiene en un rango entre los 650 y 700 grados centígrados. Temperaturas por encima de la crítica producen formación de austenita que durante el enfriamiento genera perlita, ocasionando un aumento en la dureza no deseado. Por lo general piezas como las placas para botas de protección deben estar globulizadas para así obtener los dobleces necesarios para su uso y evitar rompimiento o agrietamiento. Finalmente son templadas para garantizar la dureza. Es usado para los aceros hipereutectoides, es decir con un porcentaje mayor al 0,89 % de C, para conseguir la menor dureza posible que en cualquier otro tratamiento, mejorando la maquinabilidad de la pieza. La temperatura de recocido está entre AC3 y AC1.

Ejemplo

- El ablandamiento de aceros aleados para herramientas de más de 0.8% de C.

4.3.3 Recocido de Subcrítico

Para un acero al carbono hipoeutectoide: La microestructura obtenida en este tratamiento varía según la temperatura de recocido. Por lo general las que no excedan los 600 grados liberarán tensiones en el material y ocasionaran algún crecimiento de grano (si el material previamente no fue templado). Generalmente mostrando Ferrita-Perlita. Por encima de los 600 y bajo los 723 se habla de recocido de globulización puesto que no sobrepasa la temperatura crítica. En este caso no hay grano de perlita, los carburos se esferoidizan y la matriz es totalmente ferrítica. Se usa para aceros de forja o de laminación, para lo cual se usa una temperatura de recocido inferior a AC1, pero muy cercana. Mediante este procedimiento se destruyen las tensiones internas producidas por su moldeo y mecanización. Comúnmente es usado para aceros aleados de gran resistencia, al Cr-Ni, Cr-Mo, etcétera. Este procedimiento es mucho más rápido y sencillo que los antes mencionados, su enfriamiento es lento.


4.4 Cementado

Consiste en el endurecimiento de la superficie externa del acero al bajo carbono, quedando el núcleo blando y dúctil. Como el carbono es el que genera la dureza en los aceros en el método de cementado se tiene la posibilidad de aumentar la cantidad de carbono en los aceros de bajo contenido de carbono antes de ser endurecido. El carbono se agrega al calentar al acero a su temperatura crítica mientras se encuentra en contacto con un material carbonoso. Los tres métodos de cementación más comunes son: empacado para carburación, baño líquido y gas.

4.5 Carburización por empaquetado

Este procedimiento consiste en meter al material de acero con bajo contenido carbónico en una caja cerrada con material carbonáceo y calentarlo hasta 900 a 927 °C durante 4 a 6 horas. En este tiempo el carbono que se encuentra en la caja penetra a la superficie de la pieza a endurecer. Cuanto más tiempo se deje a la pieza en la caja con carbono de mayor profundidad será la capa dura. Una vez caliente la pieza a endurecer a la temperatura adecuada se enfría rápidamente en agua o salmuera. Para evitar deformaciones y disminuir la tensión superficial se recomienda dejar enfriar la pieza en la caja para posteriormente sacarla y volverla a calentar entre 800 y 845 °C (rojo cereza) y proceder al enfriamiento por inmersión. La capa endurecida más utilizada tiene un espesor de 0,38 mm, sin embargo se pueden tener espesores de hasta 0.4 mm.

4.6 Carburización en baño líquido

El acero a cementar se sumerge en un baño de cianuro de sodio líquido. También se puede utilizar cianuro de potasio pero sus vapores son muy peligrosos. Se mantiene la temperatura a 845 °C durante 15 minutos a 1 hora, según la profundidad que se requiera. A esta temperatura el acero absorberá el carbono y el nitrógeno del cianuro. Después se debe enfriar con rapidez al acero en agua o salmuera. Con este procedimiento se logran capas con espesores de 0,75 mm.

4.7 Carburización con gas

En este procedimiento se utilizan gases carburizantes para la cementación. La pieza de acero con bajo contenido carbónico se coloca en un tambor al que se introduce gas para carburizar como derivados de los hidrocarburos o gas natural. El procedimiento consiste en mantener al horno, el gas y la pieza entre 900 y 927 °C. después de un tiempo predeterminado se corta el gas carburizante y se deja enfriar el horno. Luego se saca la pieza y se recalienta a 760 °C y se enfría con rapidez en agua o salmuera. Con este procedimiento se logran piezas cuya capa dura tiene un espesor hasta de 0.6 mm, pero por lo regular no exceden de 0.7 mm.

4.8 Carburado, cianurado y nitrurado

Existen varios procedimientos de endurecimiento superficial con la utilización del nitrógeno y cianuro a los que por lo regular se les conoce como carbonitrurado o cianurado. En todos estos procesos con ayuda de las sales del cianuro y del amoniaco se logran superficies duras como en los métodos anteriores.